A scaling limit for the degree distribution in sublinear preferential attachment schemes
نویسندگان
چکیده
We consider a general class of preferential attachment schemes evolving by a reinforcement rule with respect to certain sublinear weights. In these schemes, which grow a random network, the sequence of degree distributions is an object of interest which sheds light on the evolving structures. In this article, we use a fluid limit approach to prove a functional law of large numbers for the degree structure in this class, starting from a variety of initial conditions. The method appears robust and applies in particular to ‘non-tree’ evolutions where cycles may develop in the network. A main part of the argument is to show that there is a unique nonnegative solution to an infinite system of coupled ODEs, corresponding to a rate formulation of the law of large numbers limit, through C0-semigroup/dynamical systems methods. These results also resolve a question in Chung, Handjani and Jungreis (2003). © 2015 Wiley Periodicals, Inc. Random Struct. Alg., 48, 703–731, 2016
منابع مشابه
Preferential Attachment Random Graphs with General Weight Function
Consider a network of sites growing over time such that at step n a newcomer chooses a vertex from the existing vertices with probability proportional to a function of the degree of that vertex, i.e., the number of other vertices that this vertex is connected to. This is called a preferential attachment random graph. The objects of interest are the growth rates for the growth of the degree for ...
متن کاملLimit distribution of the degrees in scaled attachment random recursive trees
We study the limiting distribution of the degree of a given node in a scaled attachment random recursive tree, a generalized random recursive tree, which is introduced by Devroye et. al (2011). In a scaled attachment random recursive tree, every node $i$ is attached to the node labeled $lfloor iX_i floor$ where $X_0$, $ldots$ , $X_n$ is a sequence of i.i.d. random variables, with support in [0,...
متن کاملRandom networks with sublinear preferential attachment: Degree evolutions
We define a dynamic model of random networks, where new vertices are connected to old ones with a probability proportional to a sublinear function of their degree. We first give a strong limit law for the empirical degree distribution, and then have a closer look at the temporal evolution of the degrees of individual vertices, which we describe in terms of large and moderate deviation principle...
متن کاملEmergence of multiscaling in heterogeneous complex networks
In this paper we provide numerical evidence of the richer behavior of the connectivity degrees in heterogeneous preferential attachment networks in comparison to their homogeneous counterparts. We analyze the degree distribution in the threshold model, a preferential attachment model where the affinity between node states biases the attachment probabilities of links. We show that the degree den...
متن کاملSublinear but Never Superlinear Preferential Attachment by Local Network Growth
We investigate a class of network growth rules that are based on a redirection algorithm wherein new nodes are added to a network by linking to a randomly chosen target node with some probability 1− r or linking to the parent node of the target node with probability r. For fixed 0 < r < 1, the redirection algorithm is equivalent to linear preferential attachment. We show that when r is a decayi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Random Struct. Algorithms
دوره 48 شماره
صفحات -
تاریخ انتشار 2016